Home Back

Dome Roof Oblique Cone Bottom Tank Volume Calculator

Dome Roof Oblique Cone Bottom Tank

Dome Roof Oblique Cone Bottom Tank Volume Formula


Volume Calculation

The volume of a dome top oblique cone bottom tank is calculated by determining the volume of the cylindrical section, the conical section, and the dome section. The total volume is given by:

\[ V_{\text{slope}} = \frac{1}{3} \pi r^2 H_{\text{slope}} \]

Where:

  • r = radius (diameter / 2)
  • Hslope = height of the slope section

\[ V_{\text{cylinder}} = \pi r^2 H_{\text{cyl}} \]

Where:

  • r = radius (diameter / 2)
  • Hcyl = height of the cylindrical section

\[ V_{\text{top}} = \frac{4}{6} \pi r^3 \]

Where:

  • r = radius (diameter / 2)

The total volume of the tank is the sum of the volumes of the cylindrical, conical, and dome sections:

\[ V_{\text{tank}} = V_{\text{cylinder}} + V_{\text{slope}} + V_{\text{top}} \]

Filled Volume Calculation

The filled volume of the tank is calculated using the formula:

If filled height is less than or equal to slope height:

\[ V_{\text{filled}} = \frac{1}{3} \pi \left(\frac{H_{\text{filled}}}{H_{\text{slope}}}\right) r \left(\frac{H_{\text{filled}}}{H_{\text{slope}}}\right) r H_{\text{filled}} \]

If filled height is greater than slope height:

\[ V_{\text{filled}} = \pi r^2 H_{\text{filled}} + V_{\text{slope}} \]

Where:

  • H_filled = filled height
  • H_slope = height of the slope section
  • r = radius (diameter / 2)
Dome Top Oblique Cone Bottom Tank Volume Calculator© - All Rights Reserved 2024