Home Back

Dome Roof Cone Volume Calculator

Dome Roof  Cone Tank

Dome Roof Cone Tank Volume Formula


Volume Calculation

The volume of a dome top cone tank is calculated by determining the volume of the cylindrical section, the conical section, and the dome section. The total volume is given by:

\[ V_{\text{cylinder}} = \pi r^2 H_{\text{cyl}} \]

Where:

  • r = top radius (top diameter / 2)
  • Hcyl = height of the cylindrical section

$$ \text{Cone Volume} = \frac{\pi}{3} \cdot \text{cone height} \cdot (br^2 + br \cdot tr + tr^2) $$

Where:

  • Hcone = height of the conical section
  • Dinf = bottom diameter
  • Dsup = top diameter

\[ V_{\text{dome}} = \frac{2}{3} \pi r^3 \]

Where:

  • r = bottom radius (bottom diameter / 2)

The total volume of the tank is the sum of the volumes of the cylindrical, conical, and dome sections:

\[ V_{\text{tank}} = V_{\text{cylinder}} + V_{\text{cone}} + V_{\text{dome}} \]

Filled Volume Calculation

The filled volume of the tank is calculated using the formula:

If filled height equals cone height:

$$ \text{Filled Volume} = \frac{\pi}{3} \cdot \text{cone height} \cdot (br^2 + br \cdot tr + tr^2) $$

If filled height is greater than cone height:

$$ \text{Filled Volume} = \frac{\pi}{3} \cdot \text{cone height} \cdot (br^2 + br \cdot tr + tr^2) + \pi \cdot tr^2 \cdot (\text{filled height} - \text{cone height}) $$

If filled height is less than cone height:

$$ R_{\text{cut}} = br + \left(\frac{\text{filled height}}{\text{cone height}}\right) \cdot \text{cone height} \cdot \left(\frac{tr - br}{\text{cone height}}\right) $$ $$ \text{Filled Volume} = \frac{\pi}{3} \cdot \left(\frac{\text{filled height}}{\text{cone height}}\right) \cdot \text{cone height} \cdot \left(br^2 + br \cdot R_{\text{cut}} + R_{\text{cut}}^2\right) $$

Where:

  • r = top radius (top diameter / 2)
  • Hfilled = filled height
  • Hcone = height of the conical section
  • Dinf = bottom diameter
  • Dsup = top diameter
Tank Volume Calculator© - All Rights Reserved 2024